Inhibiting a key metabolic enzyme selectively kills melanoma cells and stops tumor growth
Source: New Medical Life Science, September 2022
Researchers at Sanford Burnham Prebys, led by Ze’ev Ronai, Ph.D., have shown for the first time that inhibiting a key metabolic enzyme selectively kills melanoma cells and stops tumor growth. Published in Nature Cell Biology, these findings could lead to a new class of drugs to selectively treat melanoma, the most severe form of skin cancer.
Because tumors grow rapidly and require lots of nutrition, researchers have been investigating ways to starve cancer cells. As promising as this approach may be, the results have been less than stellar. Denied one food source, cancers invariably find others.
GCDH, which stands for Glutaryl-CoA Dehydrogenase, plays a significant role in metabolizing lysine and tryptophan, amino acids that are essential for human health. When the Ronai lab began interrogating how melanoma cells generate energy from lysine, they found GCDH was mission-critical.